

# Advanced functionalities for the future Smart Secondary Substation

#### **Konstantinos Kotsalos**

Efacec & University of Porto konstantinos.kotsalos@efacec.com









# Introductory plane

- o The shift paradigm
- Motivation

# Overview of the Conceptual Technical Architecture

- Conceptual architecture preview
- Use Cases: Analysis (Anticipated addressed challenges)

#### Current Work

- Base case scenarios & Case networks
- Final remarks Work Ahead





### **Introductory Plane**





[1] N. Ochoa "OpenDSS Tutorial", 2015 Univeristy of Manchester

Secondary Substation (S/S) or MV/LV S/S









Secondary Substation (S/S) or MV/LV S/S







#### Classic view of Power System

"fit 'n forget"

Integration of DG

#### Induced Technical Challenges

- Voltage rise effect
- Power Quality

LV case?

- Protection
- Stability

#### Responding these challenges...

- A1: Grid Reinforcement
- A2: Impart Intelligence to Grid- transit to Active Network Management

Advanced forecasting tools

Advanced coordinated operation

Advanced local distribution grid monitoring

Advanced functionalities





# **Overview of the Conceptual Technical Architecture**



# Portraying the Smart Secondary Substation







Sensors (IED, Smart Meters)



Substation

- Monitoring (Advanced RTU features, I-V sensors)
- **Tele-control** (Communication with control breakers & switches)
- **Power Flow Control** (Power Control Algorithms through tracking m-DGs and responsive-Loads)

Auto-regulation of OLTC











### Pivotal element of the proposed architecture







# **Conceptual Technical Architecture**



## Overview of the conceptual architecture

Upstream
Inputs to the DTC
and interrelation



loads

Microsource









## A time-frame analysis of the control scheme









### Managing the flexibilities provided by DERs

### Further Step to define flexibility

Correspond to the availability of an asset to offer a particular active power deviation for a specific time frame.



Flexibility might be considered as two-factors:

- Part of DSM schemes
- Multi-temporal flexibility (set of feasible trajectories)







# **Use Cases: Analysis**











#### Software used to simulate network

- GridLab-D (first approach)
- Simulink
- OpenDSS Interfaced with MATLAB (GUI framework for other ESRs)
- Pool case networks in WP4 (?) or Repository with Data

#### Starting from a benchmark IEEE case

- Based on European model
- Feeder of a Real Case network





This project has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No 675318





#### **Examined metrics**

- Voltages for Overvoltages and Undervoltages
- $VUF[\%] = \frac{V_2}{V_1} * 100\%$



According to EN-50160

#### Creating discrete base case scenarios

- no DERs
- Involving DERs (% PV+ % EVs+ %Controllable loads)
- Scope to create discrete Case scenarios indicating technical bottlenecks induced by DERs











#### **Final Remarks**



- Developments will be encompassed on LV network performing
   Multi-temporal Control strategy
- Uncertainties and impact on the control actions.
- Operation and control management
  - Making use of DER flexibility under DSM schemes
  - enabling the coordination controllable assets

#### **Current Work & Work Ahead**

- Identification of base case scenarios on benchmark networks
- Establish use case networks within WP4
- Finalizing the simulation platform
- Methodology Approach and focus on UC1-2
- Flexibility model (implicit or explicit model)







# Advanced functionalities for the future Smart Secondary Substation



2<sup>nd</sup> Workshop and Summer school Meeting

### **Konstantinos Kotsalos**

EFACEC & PDEEC student konstantinos.kotsalos@efacec.com

# Supervision

Dr Nuno Silva, Dr Ismael Miranda Prof. Helder Leite



This project has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No 675318